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Abstract. In this study we explore the topic of Trustworthy AI and how 
reversibility in neural networks can play a role in protecting machine learning 
applications.  We propose a framework to enhance machine learning systems 
robustness through the integrity verification across the inference pipeline of a 
deployed model and apply a concept of a Trusted Neural Network, which 
provides a system engineering abstraction to implement it.  We leverage the 
Invertible Neural Network architecture with its remarkable data reconstruction 
and anomaly detection capabilities to validate that the inference flow pipeline is 
intact and thus the network prediction can be trusted, as trained. The result of that 
assessment is measured as an Inference Integrity Score and can be reported in 
real time to safeguard system integrity and suppress suspicious results. We 
propose an AI firewall in the form of test nodes implementing the Trusted Neural 
Network interface comprising an input verification layer in front of the running 
models, participating in the workflow. This easy to implement verification-based 
paradigm offers a pragmatic approach to achieve machine learning robustness 
and takes a step towards Trustworthy AI. 
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1 Introduction 

With the explosion of AI-augmented systems that are impacting millions around the 
world each day, we need to ensure that those systems are trustworthy, robust, and 
protected to stand up against adversarial attacks. This concept paper is inspired by the 
increasing role of machine learning in the decision-making process across a wide 
spectrum of domains, which brings to the forefront the importance of verifying the 
integrity of end-to-end inference flow, so the outcome of the system can be trusted. 

We propose that the general solution architecture paradigm for any mission critical 
decision support system that leverages machine learning components incorporates a 
layer of integrity verification around a running model to ensure trustworthiness of the 
pipeline. Our technique is applicable to machine learning inference flows significant 
enough to be protected by an extra security layer. 

We build upon the concept of a Trusted Neural Network (TNN) [1], which leverages 
Invertible Neural Network (INN) architecture based on a revolutionary approach to 
achieve reversibility in neural networks introduced by Dinh [2] and subsequently 
incorporated into a framework by Ardizone [3]. An INN, which is invertible by 
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construction, offers a remarkable data reconstruction capability that can be leveraged 
to validate that the inference flow pipeline is intact and that the output of it can 
be trusted. 

The result of that assessment, which we call the Inference Integrity Score, can be 
reported in real time and acted upon to safeguard system integrity by suppressing 
suspicious outcomes. The implementation of our Trustworthy AI paradigm employs 
the TNN-based test nodes comprising an AI-firewall layer offers a pragmatic approach 
to protecting machine learning pipelines and does not require any intricate intervention 
into the models themselves to handle adversarial inputs. 

The remainder of this paper is organized as follows: Section 2 briefly reviews related 
work pertaining to safeguarding machine learning inference pipelines. It then elaborates 
on anomaly detection techniques [8] and Invertible Neural Networks touching upon 
normalizing flows [2] - the theory underlying the reversibility of deep neural networks. 
We also introduce the Framework for Easily Invertible Architectures (FrEIA) 
previously established by Ardizone [3], which provides an SDK to construct custom 
INN configurations to make it quick and approachable. 

We then discuss the remarkable ability of an Invertible Neural Network to 
reconstruct data from its compressed latent representation, outperforming traditional 
autoencoder architecture.  In Section 3 we look at the Trusted Neural Network API and 

 

Fig. 1. Anomalies visualized [5]. 

 

Fig. 2. Classic autoencoder [8]. 
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learn how a TNN node can be incorporated into a verification-based inference 
protection layer.  Section 4 summaries the study and offers conclusion. 

2 Related Works 

Machine learning system robustness, which encompasses building reliable, resilient, 
and fault-tolerant machine learning systems, is an active area of research. Much 
attention is given to strengthen adversarial resistance of the deep learning models 
themselves, but a test-based verification-driven approach to validate the inference 
pipeline provides an effective scheme to improve system robustness, while narrowing 
the gap between machine learning research and practice. The risks related to the 
inference pipeline’s state of integrity can be effectively mitigated by verifying the 
reasonability of the prediction outcome, which is discussed by Apruzzese in the 
methodology survey “Real Attackers Don’t Compute Gradients” [4]. 

2.1 Anomaly Detection 

We invoke the topic of anomaly detection as relevant to the verification of the inference 
pipeline integrity. Anomaly detection is a process of identifying data that does not fit 
into a pattern of what is expected. 

As described in [5] and depicted in Figure 1, abnormal patterns in the phenomena 
characterized by low dimensionality can be easily discovered with an algorithmic 
approach based on acceptable value ranges, with simple clustering techniques, or even 
assessed visually. 

Giannoni [5] and subsequently Yin [6] put anomaly detection methods in several 
categories, such as statistical-based methods, probability-based methods, similarity-
based methods, and most recent prediction-based methods. The high dimensional 
scenarios surrounding systems with machine learning components highly dependent on 
integrity of the data, however, require more sophisticated multivariate statistics 
methods based on probability distributions and deep learning techniques. 

They are exemplified by generative neural networks, such as several classes of 
autoencoders, including novel INN-based autoencoders described [8] based on 
Invertible Neural Networks trained for anomaly detection.  

 

Fig. 3. Convolutional Autoencoder [8]. 
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2.2 Autoencoders 

Autoencoders belong to the family of unsupervised deep learning neural network 
models well suited for dimensionality reduction and have been described extensively 
in numerous works, such as [5] and [6], then referenced in [8]. The general idea around 
this type of neural network is to extract the most relevant features from input data and 
then learn how to reconstruct the original data from its compressed representation. 

For unexpected inputs, which the model has not seen during training, the 
reconstruction error should be higher, and crossing a configurable threshold, dependent 
on a problem domain, constitutes an anomaly. As described in [8] and shown in Fig. 2, 
a classic autoencoder consists of an encoder and a decoder, implemented as fully 
connected neural networks. 

The encoder compresses the network input x into a lower dimensional latent 
representation z defined by the bottleneck.  The decoder takes the output of the encoder 

 

Fig. 4. Variational Autoencoder [8]. 

  

Fig. 5. Forward mapping of x → y (left) and Inverse ambiguity (right). 
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and decodes the latent representation back to the original input 𝑥.̂ The information 
preserved in hidden neurons is considered as the encoded features. The learning process 
is based on minimizing the reconstruction error, which is assessed by comparing the 
reconstructed input with the original one. The learned representation corresponds to the 
final hidden state of the encoder network and acts like a summary of the input sequence. 

There are several variations of autoencoder architecture [8], such as a convolutional 
autoencoder, depicted in Fig. 3, which uses convolutional layers to create a compressed 
representation [6], or a variational autoencoder depicted in Fig. 4, capable not only of 
reconstructing the original input, but also enhancing it by generating new content based 
on the sampling from the learned probability density distribution of the input domain. 

A compress-reconstruct type of a challenge reflected in the autoencoder encoder-
decoder architecture belongs to the class of “ill-posed” inverse problems, which are 
characterized by inherent ambiguity due to the existence of an information bottleneck. 
Such problems have been successfully addressed by the reversible neural network 
architecture applied in Invertible Neural Networks, which makes them an interesting 
option to help with our integrity verification undertaking. 

In this work we leverage previous findings and principles regarding several types of 
autoencoders together with reversible neural networks and apply the INN-based 
architecture for anomaly detection as a core of the TNN network integrity 
verification nodes. 

 

Fig. 6. Invertible Neural Network Conceptual Diagram. 

 

Fig. 7. Reconstructing phenomenon X from observation Y. 
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2.3 Invertible Neural Network 

As explored in [8] and referenced here for context, an Invertible Neural Network is a 
class of networks suited to solve ambiguity that characterizes inverse problems, where 
multiple parameter sets can produce the same observed outcome, as depicted in Fig. 5. 
To express this ambiguity, the posterior probability of the parameters’ distribution, 
given an outcome 𝑦, must be learned so the most appropriate set can be selected. 

Such a model can perform log-density estimation of data points, leading to efficient 
inference and precise reconstruction of the inputs from the hierarchical features 
extracted by the model. This extraordinary capability to reconstruct the inputs 
corresponding to the encoder-decoder functionality makes INN a natural candidate to 
help solve the problem of anomaly detection. 

An INN is trained simultaneously in the forward and reverse directions, Fig. 6. The 
forward learning process uses additional latent output variables to capture information 
otherwise lost, making the learning of the inverse process explicit. To solve the general 
inverse problem, we augment the observation space 𝑌 with a latent variable 𝑍 which 
follows a normal distribution and look for a bijective function 𝐹 that can map 𝑍 
back to 𝑋෠. 

  

(a) Forward propagation (b) Inverse propagation 

Fig. 8. Real NVP Affine Coupling Block [2]. 

 

Fig. 9. INN as Autoencoder [8]. 
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An INN learns an invertible, stable, mapping between a data distribution PX and a 
latent distribution PZ, typically Gaussian, as shown in Fig. 7. Invertibility of neural 
networks was spearheaded by Dinh [2] as “real-valued non-volume preserving 
transformations” (Real NVP) architecture, who introduced a stack of invertible affine 
coupling blocks (Fig. 8), arranged in hidden layers. Given a D-dimensional input x and 
d < D, the output y of an affine coupling layer follows the following equations [2]: 

𝑦ଵ:ௗ = 𝑥ଵ:ௗ, (1) 

𝑦ௗାଵ:஽ = 𝑥ௗାଵ:஽ ⊙ exp [𝑠(𝑥ଵ:ௗ) + 𝑡(𝑥ଵ:ௗ)], (2) 

where s and t are functions from 𝑅ௗ    →  𝑅஽ିௗ, and ⊙ is the Hadamard product or 
element-wise product. Each block splits its input and output into two parts and applies 
transformations 𝑠 (scale) and 𝑡 (translation), which themselves do not have to be 
invertible – they can be quite complex and are often implemented as artificial neural 
networks, such as a CNNs. 

It has been proven [3] that a stack of such invertible blocks makes the end-to-end 
layout also invertible. Based on this architecture, the Invertible Neural Network 
guarantees reversibility by its construction and solves the ambiguous inverse 
relationships directly. 

Fig. 10. TNN Context Diagram [1]. 

Fig. 11. TNN Architecture. 
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2.4 INN Trained as an Autoencoder 

As demonstrated by Nguyen [7] on MNIST, CIFAR and CelebA, and recently by 
Schwab [8] for time series data, an INN has superb capability for anomaly detection. It 
compared an INN-based implementation to conventional autoencoders for different 
bottleneck sizes, which demonstrated that INN autoencoders can achieve similar or 
better reconstruction results. 

It showed that the architecture restrictions on INN autoencoders to ensure 
invertibility do not negatively affect their performance, while the advantages of INNs 
are still preserved. This entails a tractable Jacobian for both forward and inverse 
mapping as well as explicit computation of posterior probabilities. 

It also provided an explanation for the saturation in reconstruction loss for large 
bottleneck sizes in classical autoencoders and concluded that an INN might not have 
any intrinsic information loss and thereby are not constrained by a maximal depth after 
which only suboptimal results can be achieved. 

The concept of an INN entails bijective input-output mapping, so the dimensions of 
input x and output y augmented with z must be equal.  As depicted in Fig. 9 below, an 
artificial bottleneck must be constructed to achieve autoencoder-like behavior. It is 
accomplished by zeroing the latent z to make sure that no extra information is retained 
by the network in the inverse process of representation learning. 

As demonstrated in [8], the reconstruction loss on the anomalous samples across a 
variety of datasets was an order of magnitude greater as compared to the reconstruction 
error on the healthy validation data.  The INN-autoencoder architecture also shows 
excellent performance, which renders it as an effective tool for the inference integrity 
verification task. 

2.5 Trusted Neural Network 

The diagram in Fig. 10 below depicts a conceptual template of a system comprising a 
Trusted Neural Network conceptualized in [1], where the output, in addition to the 
predicted result, includes an Inference Integrity Score to help assess trustworthiness of 
the outcome. 

Fig. 12. A TNN node for input integrity verification. 
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It leverages the capability of an Invertible Neural Network deal with inverse 
problems and to reconstruct an input from an output, in their respective domains.TNN 
is a general solution architecture paradigm and the concrete implementations reflecting 
the needs of specific problem domains can be derived from there. Current 
methodologies employed to verify the integrity of Artificial Neural Networks leverage 
sampling strategies, which operate in the outer perimeter of the network.  

The TNN concept, however, incorporates the integrity measure as an integral part of 
the system. We propose that the inference flow is augmented with the inverse output-
to-input verification steps, and that the INN-based Trusted Neural Network stackable 
nodes assume this responsibility – trained on the respective datasets, they are tasked 
with detecting and suppressing suspicious out-of-distribution data anomalies along 
the pipeline. 

3 Proposed Framework for Inference Integrity Verification 

3.1 Trusted Neural Network Architecture 

A TNN (Fig. 11) used as the module integrity verification node is composed of several 
high-level building blocks, each of which is independently defined, can be 
independently improved, and empirically tuned to fit the needs of any individual 
application use case. 

The integrity measure is computed by comparing an original input sample with the 
sample reconstructed by the Invertible Neural Network component embedded inside 
the TNN, and if too low, the overall prediction shall be discarded. 

3.2 Information Bottleneck Principle 

The INN is optimized along the principles of the Information Bottleneck Theory 
[10, 11] (alluded to in Fig. 11), capable of balancing the purposeful information loss 
against the desired accuracy of the model. The Information Bottleneck method 
measures how well 𝑌 can be predicted from a compressed representation 𝑍, compared 
to its direct prediction from 𝑋. The algorithm minimizes the loss function 𝐿 with respect 
to conditional distribution 𝑝(𝑧|𝑥): 

𝐿ூ஻ = 𝐼(𝑋, 𝑍) −  𝛽 𝐼 (𝑌, 𝑍), (3) 

where 𝐼(𝑋; 𝑍) and 𝐼(𝑍; 𝑌) are the mutual information of 𝑋 and 𝑍, and 𝑌 and 𝑍 
respectively, and 𝛽 is Lagrange multiplier. 

Request: 

url = 'http://api.tnn.com/' 
params = {'query': 'node_1'} 
response = requests.get (url, params) 
response.json() 

Response: 

Output:  
{'confidence': 0.777, 
 'prediction': 'compromized', 
 'Inference Integrity Score': 0.987} 

Fig. 13. TNN API Request and Response. 
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3.3 Trustworthy AI Solution Architecture 

We propose a novel type of test-driven approach to ensure ML integrity, depicted in 
Fig. 12, which leverages the TNN nodes to protect against adversarial data at any given 
step of the inference pipeline, and thus guarding its integrity. The solution employs one 
or more Trusted Neural Network node(s) with INN at its heart configured for data 
reconstruction, so that the inputs of the modules comprising a pipeline can be subjected 
to a test, as indicated in Fig. 12 steps 1-6. 

Input and outputs of a module may or may not be in the data domain, which is the 
strength of Invertible Neural Networks, as compared to the classic autoencoder 
architecture. The similarity measure and the thresholds would vary per use case, and 
thus they must be designed specifically for any given domain: 

ฮ𝑋inverted − 𝑋originalฮ < Reconstrucion Error Margin. (4) 

The Trusted Neural Network design pattern comes with REST API [12], depicted in 
Fig. 13, which in addition to the prediction outcome also returns the Inference Integrity 
Score. The proposed standard would add the Integrity Score parameter to the ML API 
response payload as an integrated workflow security measure. 

3.4 Input Reconstruction 

Several experiments were conducted to verify various INN configurations with respect 
to reconstructing the most probable input given an output. Described in [1], they 
followed the implementation examples provided in [3] using synthetic points data sets. 

Input 𝑋 Latent Variable 𝑍 Reconstructed Input 𝑌 

   

Fig. 14. MNIST Experiment. 
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Another experimental INN, configured to process the MNIST data set, tested 
successfully as well (Fig. 14). The forward pass through the invertible network gives 
us a latent image Z, which fed to the network in the reversed flow outputs a regenerated 
𝑋, noted as 𝑋inverted: 

𝑍 =  𝐼𝑁𝑁
forward

൫𝑋
original

൯, (5) 

𝑋
inverted

= 𝐼𝑁𝑁
reverse

(𝑍). (6) 

The difference between the original input X entering the TNN and its counterpart 
𝑋inverted regenerated by the network in the reverse flow is negligible: 

ฮ𝑋inverted − 𝑋originalฮ < 1𝑒 − 5. (7) 

A result like that which would be reflected in a high value of Inference Integrity 
Score and provide a successful test for a TNN node at a given step of the inference flow. 

4 Summary and Conclusion 

This work proposes an easy to implement pragmatic scheme to enhance robustness of 
machine learning systems through a test-driven inference flow verification layer based 
on the Trusted Neural Network nodes and their API abstraction. It leverages the 
Invertible Neural Network architecture and an open-source framework to construct the 
INN-based state-of-the-art anomaly detector. 

The paradigm is generalizable across problem domains and aspires to become a 
useful practice in drafting robust high-level solution architectures for systems which 
incorporate machine learning capabilities and can benefit from additional measures 
of  trustworthiness.  
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